Bounds and Approximations for Multistage Stochastic Programs
نویسندگان
چکیده
Consider (typically large) multistage stochastic programs, which are defined on scenario trees as the basic data structure. It is well known that the computational complexity of the solution depends on the size of the tree, which itself increases typically exponentially fast with its height, i.e. the number of decision stages. For this reason approximations which replace the problem by a simpler one and allow bounding the optimal value are of importance. In this paper we study several methods to obtain lower and upper bounds for multistage stochastic programs and demonstrate their use in a multistage inventory problem.
منابع مشابه
Barycentric Bounds in Stochastic Programming: Theory and Application
The design and analysis of efficient approximation schemes is of fundamental importance in stochastic programming research. Bounding approximations are particularly popular for providing strict error bounds that can be made small by using partitioning techniques. In this article we develop a powerful bounding method for linear multistage stochastic programs with a generalized nonconvex dependen...
متن کاملGuaranteed Bounds for General Non-discrete Multistage Risk-averse Stochastic Optimization Programs
In general, multistage stochastic optimization problems are formulated on the basis of continuous distributions describing the uncertainty. Such “infinite” problems are practically impossible to solve as they are formulated and finite tree approximations of the underlying stochastic processes are used as proxies. In this paper, we demonstrate how one can find guaranteed bounds, i.e. finite tree...
متن کاملScenario tree modelling for multistage stochastic programs
An important issue for solving multistage stochastic programs consists in the approximate representation of the (multivariate) stochastic input process in the form of a scenario tree. In this paper, forward and backward approaches are developed for generating scenario trees out of an initial fan of individual scenarios. Both approaches are motivated by the recent stability result in [15] for op...
متن کاملMonotonic bounds in multistage mixed-integer linear stochastic programming: theoretical and numerical results
Multistage stochastic programs bring computational complexity which may increase exponentially in real case problems. For this reason approximation techniques which replace the problem by a simpler one and provide lower and upper bounds to the optimal solution are very useful. In this paper we provide monotonic lower and upper bounds for the optimal objective value of a multistage stochastic pr...
متن کاملBounds for Multistage Stochastic Programs Using Supervised Learning Strategies
We propose a generic method for obtaining quickly good upper bounds on the minimal value of a multistage stochastic program. The method is based on the simulation of a feasible decision policy, synthesized by a strategy relying on any scenario tree approximation from stochastic programming and on supervised learning techniques from machine learning.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 26 شماره
صفحات -
تاریخ انتشار 2016